Representation Theory Exercise Sheet 1

Alice Pozzi, Alex Torzewski

MATH0073

These questions cover roughly the first two weeks of lectures and are grouped by the relevant sections. The four questions with a boxed numbers, e.g. 8., are to be handed in during the lecture on Wednesday week 3 (29/01/2020). This excludes any starred parts, which are non-assessed.

1 Sections 1+2

1. Calculate the minimal and characteristic polynomials of

$$\left(\begin{array}{cc} -4 & 2 \\ -1 & -1 \end{array}\right), \left(\begin{array}{cc} 3 & 0 \\ 0 & 3 \end{array}\right), \left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right).$$

Find their eigenvalues and eigenvectors. Write the matrices in Jordan canonical form.

- 2. Calculate matrices defining the representation of D_8 , the dihedral group of order 8, given by symmetries of a square.
- 3. Show, for any representation $\rho \colon G \to \mathrm{GL}(V)$, that the fixed points

$$V^G := \{v \in V \mid \rho(g)v = v \quad \forall g \in G\}$$

is a sub-vector space of V. Moreover, show that V^G is a subrepresentation isomorphic to some number of copies of $\mathbb{1}$.

- 4. Show that for any ρ_1, ρ_2 , then $\rho_1 \oplus \rho_2$ is isomorphic to $\rho_2 \oplus \rho_1$.
- 5. Let k be a field of characteristic $\neq 2$ and let $V_2 \subset k[x,y]$ denote the subspace of polynomials of homogeneous degree 2.
 - (a) Show that the action of C_2 given by interchanging x and y defines a representation of C_2 on V_2 . Give this in terms of matrices.
 - (b) Show that this representation decomposes as a direct sum of some number of copies of $\mathbb{1}$ and ϵ , where ϵ is the non-trivial one-dimensional representation of C_2 (*Hint: look for polynomials fixed or anti-fixed under C*₂)
 - (c) Generalise this to all $V_n \subset k[x,y]$, $n \ge 1$.
 - *(d) Think about the case of char(k) = 2.
- 6. Fix $n \ge 1$ and let $V = \mathbb{C}^n$. Let e_i denote the i^{th} basis vector.
 - (a) Show there is an *n*-dimensional representation of S_n given by $e_i \mapsto e_{\sigma(i)}$ under σ .
 - (b) Find a non-zero element of V^{S_n}
 - (c) Show that V^{S_n} is one-dimensional (*Hint: find a \sigma for which* $\operatorname{nullity}(\rho(\sigma) \operatorname{id}) = 1$).

- 7. (a) Let $\rho: G \to GL(V)$ be a representation of G and $H \le G$ be a subgroup. Show that there is a representation of H called *restriction*, $\operatorname{Res}_H^G(\rho)$, given by composing $H \hookrightarrow G$ and ρ .
 - (b) Let $\rho \colon Q \to \operatorname{GL}(V)$ be a representation of Q, where Q is a quotient of G. Show that there is a representation of G defined by composing the quotient map $G \twoheadrightarrow Q$ and ρ . The resulting representation is called the *inflation* or *lift* of ρ and denoted $\operatorname{Inf}_Q^G(\rho)$.
 - (c) Show that $\mathrm{Inf}_Q^G(\rho)$ is irreducible if and only if ρ is.
 - (d) Let $f: G' \to G$ be any homomorphism. Show that a representation of G defines a representation of G'. This is called *pullback*.
- 8. The quaternion group Q_8 is defined by $\langle i, j \mid i^2 = j^2 = -1, ij = -ji \rangle$.
 - (a) Show that the quaternions can alternatively be thought of a subgroup of $\mathrm{GL}_2(\mathbb{C})$ defined by

 $i \mapsto \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right), j \mapsto \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array} \right).$

Use this to define a representation ρ of Q_8 . Show that it is irreducible.

- (b) Show that the restriction of ρ to $C_4 \cong \langle i \rangle \leq Q_8$ is reducible and splits as a sum of two one-dimensional representations.
- 9. Show that a one-dimensional representation of a finite abelian group is given by a choice of one-dimensional representation for each factor of its decomposition as a finitely generated abelian groups. In particular, how many one-dimensional \mathbb{C} -representations of a finite abelian group A are there?
- 10. (a) Show that any one-dimensional representation must have abelian image (i.e. the image as a group homomorphism is abelian).
 - (b) Show that one-dimensional representations of G are in bijection with one-dimensional representations of $G^{ab} = G/[G,G]$ (Hint: use 7(b), you may need to look up the properties of the abelianisation).
- 11. Consider the representation of $\rho \colon C_4 \to \mathrm{GL}_2(\mathbb{R})$ defined by

$$\sigma \longmapsto \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right).$$

- (a) Show that ρ has no one-dimensional submodule and so is irreducible.
- (b) Show that the representation $\rho' \colon C_4 \to \mathrm{GL}_2(\mathbb{C})$ defined by the same matrices is reducible. (In this case we say that ρ is irreducible but not *absolutely irreducible*).
- *(c) Show that ρ provides a counter-example to the second part of Schur's lemma holding over an non-algebraically closed field.

2 Sections 3 + 4

- 1. Given a homomorphism of *R*-modules $f: M \to N$,
 - i) $\ker f$ is a submodule of M,
 - ii) im f is a submodule of N.
- 2. Show that $\operatorname{Hom}_k(\rho_1, \rho_2 \oplus \rho_3) = \operatorname{Hom}_k(\rho_1, \rho_2) \oplus \operatorname{Hom}_k(\rho_1, \rho_3)$. Deduce that the same is true for $\operatorname{Hom}_G(-,-)$.

2

- 3. Calculate the duals of the n one-dimensional complex representations of C_n .
- 4. If ρ is an irreducible representation and χ is a one dimensional representation, show that $\chi \otimes \rho$ is also an irreducible representation.
- 5. Let *A* be an abelian group and $\rho: A \to GL(V)$ be a representation.
 - (a) Show that for any $g \in A$, the linear map $\rho(g) \colon V \to V$ defines an endomorphism of V as k[A]-modules.
 - (b) Now assume that k is an algebraically closed field. Using Schur's lemma, deduce that any irreducible representation of an abelian group must be one-dimensional.
- 6. Let M be a module of a ring of the form $R \times S$.
 - (a) Show that $(1_R, 0) \cdot M \subseteq M$ is an $R \times S$ -submodule of M.
 - (b) Show that the map

$$M \longrightarrow (1_R, 0) \cdot M \oplus (0, 1_S) \cdot M$$

 $m \longmapsto ((1_R, 0) \cdot m, (0, 1_S) \cdot m)$

is an isomorphism of $R \times S$ -modules.

- (c) Deduce that for a simple $R \times S$ -module, either R or S must act as zero.
- 7. Let V be a two-dimensional k[G]-module with basis e_1, e_2 .
 - (a) Show that $V\otimes V$ has a one-dimensional submodule spanned by $(e_1\otimes e_2-e_2\otimes e_1)$ (Hint: suppose $\rho(g)=\left(\begin{array}{cc}a&b\\c&d\end{array}\right)$...).
 - (b) Describe the resulting representation $\chi \colon G \to \mathrm{GL}_1(k)$ in terms of matrices.
 - *(c) Show that this was all independent of the choice of basis.
 - 8. (a) Show that for any map $f \colon G \to H$, there is an induced ring homomorphism $k[G] \to k[H]$. Show that this is a homomorphism of k[G]-modules when g acts on k[H] by multiplication by f(g) (in fact, this is considering k[H] pulled back to G).
 - (b) Consider the quotient map $C_4 \to C_2$. The kernel of $k[C_4] \to k[H]$ is a $k[C_4]$ -module (why?). Find the matrices describing the corresponding representation of C_4 . Show that this decomposes as a sum of two one-dimensional representations.
- 9. (a) Show that as a ring $k[C_n] \cong k[x]/(x^n-1)$.
 - (b) Show that the ideals of k[x] defined by (X a), (X b) are coprime if $a \neq b$.
 - (c) Use Chinese remainder theorem to show that as rings

$$\mathbb{C}[C_n] \cong \mathbb{C} \times ... \times \mathbb{C}.$$

- (d) Using Lemma 3.15, deduce that there are exactly n isomorphism classes of simple $\mathbb{C}[C_n]$ modules and they are all one dimensional.
- *(e) Find a description of $\mathbb{F}_p[C_p]$. How many maximal ideals does it have? How many isomorphism classes of one-dimensional representations of C_p are there over \mathbb{F}_p ?

DEPARTMENT OF MATHEMATICS, UNIVERSITY COLLEGE LONDON, GOWER STREET, LONDON, WC1E 6BT, UK

E-mail address: a.pozzi@ucl.ac.uk, a.torzewski@ucl.ac.uk